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Phase separation in two-dimensional fluids: The role of noise
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We use a lattice Boltzmann scheme within which the noise can be turned on and off to investigate the effect
of stochastic terms on the phase ordering of a two-dimensional binary fluid. Sufficiently strong noise slows the
growth in the hydrodynamic regime, changing the growth exponenta52/3 to a51/2.
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I. INTRODUCTION

Binary mixtures of immiscible fluids, sayA and B,
quenched below the critical temperature phase separate
A- andB-rich domains that grow in time. Once integral d
mains have formed experimental and theoretical evide
shows that the typical domain sizeR(t) grows as a power
law with time t as @1#

R~ t !;ta. ~1!

The exponenta is believed to be universal, depending on
on the growth mechanism and not on the details of the p
ticular system. The aim of this paper is to clarify the effect
noise on the value ofa for phase separation in two
dimensional binary fluids.

The dynamics of binary fluids can be described on c
tinuum length and time scales by the continuity, Navi
Stokes, and convection-diffusion equations@2#,

] tn1]a~nua!50, ~2!

] t~nub!1]a~nuaub!52]aPab1n¹2~nub!

1]b$l~n!]a~nua!%1zb , ~3!

] tw1]a~wua!5Gu¹2Dm2u]aS w

n
]bPabD1j, ~4!

wheren is the total density of the fluid,u is the bulk fluid
velocity, w is the density difference between the two co
ponents,n andl are viscosities, andGu is a diffusion coef-
ficient. Pab is the pressure tensor andDm the chemical po-
tential difference between theA and B components. The
noise termsj andzW are Gaussian distributed with zero ave
age and correlations with strength representing tempera
effects @2#. Greek indices are used to represent Cartes
directions and the usual repeated summation conventio
assumed.

Several growth mechanisms are operative in binary flu
@1#. The first is Lifshitz-Slyozov growth, the relative diffu
sion of A and B atoms between domains@3#. This is de-
scribed by Eq.~4! with uW 50, and simple dimensional analy
sis gives the correct growth exponenta51/3. The diffusive
mechanism is dominant at early times and large viscos
PRE 591063-651X/99/59~5!/4741~4!/$15.00
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when the Reynolds number is still too small to allow hydr
dynamic flow to be important.

A second, faster growth process is curvature-driven
drodynamic flow@4#. This corresponds to an exponenta
52/3, which follows from dimensional analysis of the ter
on the left-hand side of the Navier-Stokes equation~3! and
the pressure term on the right-hand side. This mechanis
important in systems with a low viscosity when the velociti
are sufficiently developed. It leads to circular domains
flow is induced by the pressure difference between points
different curvature. However, it cannot decrease the num
of domains in the system. Hence, it is important on incre
ingly long length scales: the circular domains remaining
shorter length scales grow more slowly by the Lifshit
Slyozov mechanism@5#. This is in accord with a recent pape
by Grant and Elder@6#, who pointed out that the asymptoti
growth exponent must bea<1/2.

In this Rapid Communication we shall be concerned w
a third mechanism for growth in a two-dimensional bina
fluid, which can result when stochastic terms are presen
the Navier-Stokes equations. As first pointed out by S
Miguel et al. @7# sufficiently large noise leads to a growt
exponenta51/2. However, there is some confusion in th
literature about whether and when noise changes the valu
the critical exponent and about the mechanism for no
driven growth.

The valuea51/2 has been observed in computer simu
tions of domain growth in binary fluids using molecular d
namics @8#. a52/3 was seen in lattice Boltzmann simul
tions of growth where noise was absent@9#. However, the
situation is not entirely clear. Lookmanet al. @10# performed
simulations without noise that gavea51/2 and calculations
using lattice gas cellular automata where noise is an inte
part of the simulation gave botha51/2 @11# and a52/3
@12#.

To investigate these points we consider domain growth
a two-dimensional binary fluid using lattice Boltzmann sim
lations @13#, which have the advantage that it is possible
include stochastic terms that can be switched on and off@14#.
In this way we are able to test directly the effect of noise
the domain growth. We consider both noise that couples
the pressure and noise that couples to the chemical poten
R4741 ©1999 The American Physical Society
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We first summarize the lattice Boltzmann approach a
describe how stochastic terms are introduced into the si
lations. We then present the results of the computer sim
tions and discuss the mechanism by which noise change
value of the growth exponent.

II. MODEL

We use a nine-velocity lattice Boltzmann model describ
in detail in Ref.@15#. The lattice Boltzmann method is es
sentially a finite difference scheme for solving the continu
equations~2!–~4! @13#. One-particle, directional distribution
functions f i(xW ,t) andgi(xW ,t) are defined at each sitexW of a
square lattice for each of nine directionsi corresponding to
lattice vectorseW i . These are related to the physical variab
by

n5(
i

f i , w5(
i

gi , nua5(
i

f ieia . ~5!

The $ f i% and $gi% evolve by streaming along directioni
followed by a collision step that conserves density, mom
tum, and density difference. The evolution equations are

f i~xW1eW iDt,t1Dt !2 f i~xW ,t !52
1

t1
~ f i2 f i

01z i !, ~6!

gi~xW1eW iDt,t1Dt !2gi~xW ,t !52
1

t2
~gi2gi

01j i !, ~7!

identical to those of Ref.@15# except for the addition of the
stochastic termsz i andj i @14#. The right-hand sides of Eqs
~6! and~7! are linearized collision operators with the sour
termsf i

0 andgi
0 chosen first so that the conservation laws

obeyed and second so that in thermodynamic equilibrium

FIG. 1. Growth of typical domain sizeR with time t for a two-
dimensional binary fluid ford, no noise (t150.8);n, a stochastic
term in the pressure tensor@t150.8; var(z)50.005#. The lines
correspond to growth exponentsa5

2
3 ~solid line! and a5

1
2

~dashed line!.
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model fluid minimizes a chosen input free energy dens
@16#. In these simulations we use

C5E drWH a

2
~w!21

b

4
~w!41

k

2
~¹w!2J , ~8!

with a521,b51, andk51. The pressure tensorPab and
chemical potentialDm which are calculated@17# from C
appear in the Navier Stokes equation~3! and convection-
diffusion equation~4!, respectively.

The lattice Boltzmann scheme reproduces to second o
the continuum equations~2!–~4! with viscosities and diffu-
sivity related to the relaxation parameterst1 andt2 through

n5
~2t121!

6
~Dt !c2, l~n!5S t12

1

2DDtS c2

2
2

dp0

dn D ,

u5~Dt !c2~t221/2!. ~9!

FIG. 2. Snapshots of the domain growth of a binary fluid co
paring the evolution for~a! no noise, and~b! a stochastic term in the
pressure tensor@t150.8; var(z)50.005 in~b!#.
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We use c51, nt50.01, t25(111/A3)/2.0.79, and
G51. Different values oft1 are used in different runs to
control the value of the viscosity.

We now describe how we choose the noise termz i in Eq.
~6!. sxx and sxy are chosen as independent Gaussian v
ables with a given variance. We takesyy52sxx ,sxy5syx
and put

z050, z15z35
1

2
sxx , z25z45

1

2
syy , ~10!

z552z65z752z85
1

4
sxy . ~11!

It can be easily verified that for the nine-velocity model

(
i

z i50, (
i

z ieia50, ~12!

and hence that the conservation of mass and momentu
unaffected by the noise. The contribution of the noise to
pressure tensor is

Pab[(
i

z ieiaeib5sab . ~13!

In particular,z i with 1< i<4 contributes toPxx and Pyy ,
while z i with 5< i<8 contributes toPxy . Thej are defined
similarly. This allows us to tune the strength of the fluctu
tions, which is measured by the variance of the random v
ables, var(z).

FIG. 3. Local features of the growing domain pattern and
corresponding velocity field for no noise~left-hand-column!, and a
stochastic term in the pressure tensor~right-hand-column!. The ve-
locity field is randomized by the noise@t150.8, var(z)50.005 in
~b!#.
i-

is
e

-
i-

III. RESULTS

In all of the simulations reported the system was initi
ized withn51.0 andw chosen randomly between20.5 and
0.5 and then quenched to a final state defined by parame
a521,b5k51. The densityn remains an essential con
stant throughout the fluid in all of the cases considered. T
system size was 2563256 and simulations were typicall
run for 105 time steps. Consider firstj50,zÞ0; that is, the
addition of a noise term in the pressure tensor which dire
affects the velocity field. Figure 1 shows the average size
domains following a quench measured by the inverse of
first moment of the structure factor for two sets of runs. A
of the parameters were the same except for the noise. E
set consists of three different runs, and the results of each
are averaged in the figure. For no noise the usual gro
exponenta52/3 is clearly seen. In the simulations wit
noise the growth law isa51/2.

Pictorial snapshots of the time evolution of runs with a
without noise are compared in Fig. 2. The immediate c
clusion is that noise increases the roughness of the surf
of the domains. This corresponds, on a mesoscopic scal
the randomization of the velocity field, as shown in Fig. 3

The crossover in the value of the growth exponent fro
2/3 to 1/2 occurs because the noise destroys the driving f
for growth, which results from the pressure difference b
tween points of different curvature on a domain surface. T
velocity field is now driven by the noise rather than t
Laplace pressure. Hence, the exponenta51/2 can be de-
duced from dimensional analysis balancing the noise te
;R21(R2t)21/2 and the inertial terms on the left-hand sid
of Eq. 3;Rt22.

e
FIG. 4. Growth of typical domain sizeR with time t for a two-

dimensional binary fluid when a stochastic term coupling to
pressure tensor is switched on during the growth process.t150.8.
s, no noise;d var(z)50.003;n, var(z)50.005. The lines corre-
spond to growth exponentsa5

2
3 ~solid line!, and a5

1
2 ~dashed

line!.
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The crossover betweena52/3 and 1/2 is expected to oc
cur when

DP;s/R;var~z!, ~14!

whereDP is the Laplace pressure ands is the surface ten-
sion. This is illustrated in Fig. 4. A simulation was run with
out noise until the 2/3 growth law was well established. T
noise was then turned on and further evolution of the run w
compared with var(z)50, 0.003, and 0.005. With no nois
the a52/3 growth persisted as expected. For var(z)
50.005 the exponent rapidly crossed over toa51/2. For
var(z)50.003 the crossover was slower. The approxim
values ofs and R at the crossover areR;16,s.0.05 for
var(z)50.005 andR;18, s.0.04 for (z)50.003, consis-
tent with Eq.~14!.

To check the role of the noise in the domain growth
turned off the Laplace pressure artificially by removing t
derivative terms in the pressure tensorPab . The system
grew very slowly, approaching an exponent consistent w
1/3. Therefore, the value 1/2 found in@14# remains puzzling.

Finally, we consider the effect of the noise termj, which
couples to the chemical potential and hence directly affe
the order parameterw rather than the velocity field. Figure
shows the evolution of the domain size for three differe
sets of parameter values starting from the same initial c
ditions. These correspond to~i! low viscosity (t150.8), low
noise @var(j)50.001#; ~ii ! high viscosity (t1550), high
noise @var(j)50.01#; ~iii ! low viscosity (t150.8), high
noise@var(j)50.01#. The main effect of the noise is at ear
time when domains are forming. In the noisier systems
order parameter takes longer to reach its equilibrium va
within each domain.

Once the domains have formed the noise has no obs
able effect on the evolution. In the low viscosity simulatio
inertial flow gives an exponent 2/3 independent of t
strength of the noise. This is because noise in the chem
potential difference is local and does not destroy the fl
field. Similarly, for the high viscosity simulation where di
fusive growth is expected,a51/3. This is also as expected
noise is known to be irrelevant for Lifshitz-Slyozov grow
@1#.
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We conclude that noise can destroy curvature-driven
drodynamic growth and hence the correspondinga52/3
growth regime. The system crosses over to a regime w
a51/2, where the velocity field is driven by the noise.
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FIG. 5. Growth of typical domain size with time for a binar
fluid with a stochastic term in the chemical potential difference:s,
low noise@var(z)50.001#, low viscosity (t150.8); d, high noise
@var(z)50.01#, low viscosity (t150.8);n, high noise @var(z)
50.01#, high viscosity (t1550). The noise inhibits the initial for-
mation of the domains, but neither the diffusive growth lawa
51/3 expected at high viscosities nor the hydrodynamic grow
with a52/3 expected at low viscosities is altered. The straight lin
correspond toa52/3 ~solid!, a51/2 ~short dashed!, and a51/3
~long dashed!.
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